A-PDF Watermark DEMO: Purchase from www.A-PDF.com to remove the watermark
 USN

 Sixth Semester B.E. Degree Examination, Dec.2013/Jan. 2014

 Sixth Semester B.E. Degree Examination, Dec.2013/Jan. 2014 Computer Integrated Manufacturing

 Computer Integrated Manufacturing}
Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Discuss the following automation strategies:
i) Specialization of operations
ii) Increased flexibility
iii) On-line inspection
b. With sketch explain the automation migration strategy.
c. There are total 24 machines in the manufacturing plant and the part produced in a batch must be processed through an average of eight machines. 24 new batches are launched each week. Average operation time is 6 min , average batch size is 30 parts, average set-up time is 6 hr and average non-operation time per batch is $12 \mathrm{hr} /$ machine. The plant operates an average of 80 production hours per week and assume $\mathrm{A}=95 \%$. Determine:
i) Manufacturing lead time for an average part
ii) Production rate
iii) Plant capacity
iv) Plant utilization
v) WIP
vi) WIP ratio
(08 Marks)
2 a. Discuss the general methods of transporting work pieces on flow lines.
(08 Marks)
b. With sketch explain linear walking beam and Geneva wheel, work transfer mechanisms.
(08 Marks)
c. State the importance of Buffer storage.
(04 Marks)
3 a. Enumerate the difference between 'upper bound approach' and lower bound approach'.
(06 Marks)
b. Explain the following terms used in the analysis of an automated flow lines:
i) Partial automation
ii) Lower bound approach
(06 Marks)
c. A transfer line has ten station with an ideal cycle time of 30 sec . The frequeney of the line stop occurrence is 0.06 stop/cycle on an average. When a stop occurs, it takes an average of 5 min to make repairs. Determine:
i) Average production time, T_{p}
ii) Average production rate, R_{c}
iii) Line efficiency, E
iv) Proportion of down time.
(08 Marks)
4 a. Discuss the following:
i) Minimum rational work element
ii) Cycle time
iii) Line efficiency
iv) Precedence constraints
(08 Marks)
b. Explain different methods to solve assembly line balancing problems.
(12 Marks)

PART - B

5 a. State and briefly explain the important design principles for automated assembly system.
(06 Marks)
b. List the parts feeding devices in delivery system and with sketch explain pick and place mechanism.
(06 Marks)
c. An ten station assembly line has an ideal cycle time of 0.2 min . The fraction defection rate at each of the ten stations is $q=0.020$ and the system operates using the instantaneous control strategy. When the breakdown occurs, it takes 1 min , an average, for the system to be put back into operation. Determine the production rate for the assembly line, the yield of good products and the proportion uptime of the system.
(08 Marks)
6 a. Describe the three main components used in an MRP system.
(10 Marks)
b. Define capacity planning and explain its decisions.
c. Explain retrieval approach used for computer aided process planning systems.

7 a. Give the classification of machining centres and explain any two machine centres. ($\mathbf{1 0} \mathbf{M a r k s}$)
b. State and explain the steps involved in part programming.
(10 Marks)
8 a. State and draw five types of joints commonly used in industrial robot construction. ($\mathbf{0 5}$ Marks)
b. Draw the robot configurations for the given joint notations and briefly explain:
i) TRR
ii) VRO
(10 Marks)
c. Explain end effectors.

Sixth Semester B.E. Degree Examination, Dec.2013/Jan. 2014 Design of Machine Elements - II

Time: 3 hrs .
Max. Marks: 100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Use of data handbook is permitted. 3. Missing data may be suitably assumed.
 Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Use of data handbook is permitted. 3. Missing data may be suitably assumed.
 Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Use of data handbook is permitted. 3. Missing data may be suitably assumed.
 Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Use of data handbook is permitted. 3. Missing data may be suitably assumed.

PART - A
1 a. A curved link mechanism made from a round steel bar is shown in Fig.Q1(a). The material for link is plain carbon steel 30C8 with an allowable yield strength of 400 MPa . Determine the factor of safety.
(10 Marks)

b. A high pressure cylinder consists of a steel tube with inner and outer diameter of 20 mm and 40 mm respectively. It is jacketed by an outer steel tube with an outer diameter of 60 mm . The tubes are assembled by shrinking process in such a way that maximum principal stress induced in any tube is limited to 100 MPa . Calculate the shrinkage pressure and original dimensions of the tubes. Take the Young's modulus as 207 GPa .
(10 Marks)
2 a. Write a note on construction of flat and ' V ' belt.
b. It is required to design a ' V ' belt drive to connect a $7.5 \mathrm{~kW}, 1440 \mathrm{r} / \mathrm{min}$ induction motor to a fan, running at approximately $480 \mathrm{r} / \mathrm{min}$ for a service of $24 \mathrm{hr} /$ day. Space is available for a centre distance of about 1 m . Determine the pitch length of the belt and number of belts required,
(15 Marks)
3 a. Enumerate the applications of springs. Also derive an expression for the deflection of a close coiled helical spring.
(06 Marks)
b. A spring is subjected to a load varying from 500 N and 1200 N . It is to be made of oil tempered cold drawn wire. Design factor based on Wahl's line is 1.25 . The spring index is to be 6 . The compression in the spring for the maximum load is 30 mm . Determine the wire diameter, mean coil diameter and free length of the spring. Take the yield stress in shear as 700 MPa and endurance stress in shear as 350 MPa for the material of the wire. (14 Marks)
4
a. Write a note on design of gears based on dynamic loading and wear.
(06 Marks)
b. A cast steel 24 teeth spur pinion operating at $1150 \mathrm{r} / \mathrm{min}$ transmits 3 kW to a cast steel 56 teeth spur gear. The gears have the following specifications:

Module : 3 mm
Face width : 35 mm
Factor of dynamic loading, $\mathrm{C}=350 \mathrm{~N} / \mathrm{mm}$
Determine the induced stress in the weaker gear. Also determine the dynamic load and wear load. Comment on the results.
(14 Marks)

PART - B

5 a. Write a note on formative number of teeth in bevel gear.
(04 Marks)
b. Hardened steel worm rotates at $1250 \mathrm{r} / \mathrm{min}$ and transmits power to a phosphor bronze gear with a transmission ratio of 15:1. The centre distance is to be 225 mm . Design the gear drive and give estimated power input ratings from the stand point of strength, endurance and heat dissipation. The teeth are of 1412° full depth involute.
(16 Marks)
a. A cone clutch has a semi cone angle of 12°. It is to transmit 10 kW power at $750 \mathrm{r} / \mathrm{min}$, the width of the face is one fourth of the mean diameter of friction lining. If the normal intensity of pressure between contacting surfaces is not to exceed $0.085 \mathrm{~N} / \mathrm{mm}^{2}$ and the coefficient of friction is 0.2 , assuming uniform wear conditions, calculate the dimensions of the clutch.
(10 Marks)
b. A band break arrangement is shown in Fig.Q6(b). It is used to generate a maximum braking torque of $200 \mathrm{~N}-\mathrm{m}$. Determine the actuating force ' P ', if the coefficient of friction is 0.25 . The angle of wrap of the band is 270°. Determine the maximum intensity of pressure, if the band width is 30 mm .
(10 Marks)

7 a. Explain the following types of lubrication:
(i) Hydrodynamic lubrication
(ii) Hydrostatic lubrication
(iii) Boundary lubrication
(iv) Elasto hydro dynamic lubrication.
b. The following data are given for a 360° hydro-dynamic bearing:

Bearing diameter: 50.02 mm	Journal diameter : 49.93 mm
Bearing length: 50 mm	Journal speed : $1440 \mathrm{r} / \mathrm{min}$
Radial load $=8 \mathrm{kN}$	Viscosity of lubricant : 12 cp.

(08 Marks)

The bearing is machined on a lathe from bronze casting, while the steel journal is hardened and ground. The surface roughness values for turning and grinding are 0.8 and 0.4 microns respectively. For thick film lubrication the minimum film thickness should be five times the sum of surface roughness values for the journal and the bearing. Calculate:
(i) The permissible minimum film thickness
(ii) The actual film thickness under the operating conditions
(iii) Power loss in friction.
(iv) Flow requirement.
(12 Marks)
8 a. Explain the considerations given in the design of pistons for IC engines.
b. Design a trunk piston for an IC engine. The piston is made of cast iron with an allowable stress of 38.5 MPa . The bore of the cylinder is 200 mm and the maximum explosion pressure is 0.4 MPa . The permissible bending stress of the material of the gudgeon pin is 100 MPa . The bearing pressure in the gudgeon pin bearing of the connecting rod is to be taken as 200 MPa .
(15 Marks)

Sixth Semester B.E. Degree Examination, Dec.2013/Jan. 2014 Heat and Mass Transfer

Time: 3 hrs .

Max. Marks:100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Use of heat transfer data book is permitted.

1 a. Explain briefly the mechanism of conduction, convection and radiation heat transfer.
(06 Marks)
b. With sketches, write down the mathematical representation of three commonly used different types of boundary conditions for one dimensional heat equation in rectangular coordinates,
(08 Marks)
c. A plate of thickness ' L ' whose one side is insulated and the other side is maintained at a temperature T_{1} is exchanging heat by convection to the surrounding area at a temperature T_{2}, with atmospheric air being the outside medium. Write mathematical formulation for one dimensional, steady state heat transfer, without heat generation.
(06 Marks)
2 a. An electric cable of 10 mm diameter is to be laid in atmosphere at $20^{\circ} \mathrm{C}$. The estimated surface temperature of the cable due to heat generation is $65^{\circ} \mathrm{C}$. Find the maximum percentage increase in heat dissipation, when the wire is insulated with rubber having $\mathrm{K}=0.155 \mathrm{~W} / \mathrm{mK}$. Take $\mathrm{h}=8.5 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.
(06 Marks)
b. Differentiate between the effectiveness and efficiency of fins.
(04 Marks)
c. In order to reduce the thermal resistance at the surface of a vertical plane wall $(50 \times 50 \mathrm{~cm})$, 100 pin fins (1 cm diameter, 10 cm long) are attached. If the pin fins are made of copper having a thermal conductivity of $300 \mathrm{~W} / \mathrm{mK}$ and the value of the surface heat transfer coefficient is $15 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, calculate the decrease in the thermal resistance. Also calculate the consequent increase in heat transfer rate from the wallif it is maintained at a temperature of $200^{\circ} \mathrm{C}$ and the surroundings are at $30^{\circ} \mathrm{C}$.
(10 Marks)
3 a. Show that the temperature distribution in a body during Newtonian heating or cooling is given by $\frac{T-T_{a}}{T_{i}-T_{a}}=\frac{\theta}{\theta_{i}}=\operatorname{Exp}\left(\frac{-h A_{s} t}{\rho C V}\right)$.
(06 Marks)
b. The steel ball bearings ($\mathrm{K}=50 \mathrm{~W} / \mathrm{mK}, \alpha=1.3 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{sec}$), 40 mm in diameter are heated to a temperature of $650^{\circ} \mathrm{C}$. It is then quenched in a oil bath at $50^{\circ} \mathrm{C}$, where the heat transfer coefficient is estimated to be $300 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Calculate:
i) The time required for bearings to reach $200^{\circ} \mathrm{C}$.
ii) The total amount of heat removed from a bearing during this time and
iii) The instantaneous heat transfer rate from the bearings, when they are first immersed in, oil bath and when they reach $200^{\circ} \mathrm{C}$.
(14 Marks)
4 a. With reference to fluid flow over a flat plate, discuss the concept of velocity boundary and thermal boundary layer, with necessary sketches.
(05 Marks)
b. The exact expression for local Nusselt number for the laminar flow along a surface is given by $\mathrm{Nu}_{\mathrm{x}}=\frac{\mathrm{h}_{\mathrm{x}} \mathrm{x}}{\mathrm{k}}=0.332 \mathrm{R}_{\mathrm{ex}}^{1 / 2} \mathrm{P}_{\mathrm{r}}^{1 / 3}$. Show that the average heat transfer coefficient from $x=0$ to $x=L$ over the length ' L ' of the surface is given by $2 h_{L}$ where h_{L} is the local heat transfer coefficient at $\mathrm{x}=\mathrm{L}$.
(05 Marks)
c. A vertical plate 15 cm high and 10 cm wide is maintained at $140^{\circ} \mathrm{C}$. Calculate the maximum heat dissipation rate from both the sides of the plates to air at $20^{\circ} \mathrm{C}$. The radiation heat transfer coefficient is $9.0 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. For air at $80^{\circ} \mathrm{C}$, take $\mathrm{r}=21.09 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{sec}, \mathrm{P}_{\mathrm{r}}=0.692$, $\mathrm{k}_{\mathrm{f}}=0.03 \mathrm{~W} / \mathrm{mK}$.
(10 Marks)

PART - B

5 a. Explain the physical significance of i) Nusselt number; ii) Groshoff number.
(04 Marks)
b. Air at 2 atm and $200^{\circ} \mathrm{C}$ is heated as it flows at a velocity of $12 \mathrm{~m} / \mathrm{sec}$ through a tube with a diameter of 3 cm . A constant heat flux condition is maintained at the wall and the wall temperature is $20^{\circ} \mathrm{C}$ above the air temperature all along the length of the tube. Calculate:
i) The heat transfer per unit length of tube.
ii) The increase in bulk temperature of air over a 4 m length of the tube.

Take the following properties for air $\operatorname{Pr}=0.681, \mu=2.57 \times 10^{-5} \mathrm{~kg} / \mathrm{ms}, \mathrm{K}=0.0386 \mathrm{~W} / \mathrm{mK}$ and $\mathrm{C}_{\mathrm{p}}=1,025 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
(10 Marks)
c. Obtain a relationship between drag coefficient, c_{m} and heat transfer coefficient, h_{m} for the flow over a flat plate.
(06 Marks)
6 a. Derive an expression for LMTD of a counter flow heat exchanger. State the assumptions made.
(08 Marks)
b. What is meant by the term fouling factor? How do you determine it?
(04 Marks)
c. Engine oil is to be coded from $80^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ by using a single pass counter flow, concentric tube heat exchanger with cooling water available at $20^{\circ} \mathrm{C}$. Water flows inside a tube with inner diameter of 2.5 cm and at a rate of $0.08 \mathrm{~kg} / \mathrm{sec}$ and oil flows through the annulus at the rate of $0.16 \mathrm{~kg} / \mathrm{sec}$. The heat transfer coefficient for the water side and oil side are respectively $\quad h_{w}=1000 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$ and $\mathrm{h}_{\text {oil }}=80 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$. The fouling factors is $\mathrm{F}_{\mathrm{w}}=0.00018 \mathrm{~m}^{2}{ }^{\circ} \mathrm{C} / \mathrm{W}$ on both the sides and the tube wall resistance is negligible. Calculate the tube length required.
(08 Marks)
7 a. Sketch a pool boiling curve for water and explain briefly the various regimes in boiling heat transfer.
(06 Marks)
b. Define mass transfer coefficient.
(02 Marks)
c. A 12 cm outside diameter and 2 m long tube is used in a big condenser to condense the steam at 0.4 bar. Estimate the unit surface conductance i) in vertical position; ii) in horizontal position. Also find the amount of condensate formed per hour in beth the cases.
The saturation temperature of the steam $=74.5^{\circ} \mathrm{C}$.
Average wall temperature $=50^{\circ} \mathrm{C}$.
The properties of water film at average temperature of $\frac{75.4+50}{2}=62.7^{\circ} \mathrm{C}$ are given below $\rho=982.2 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~h}_{\mathrm{f}_{\mathrm{e}}}=2480 \mathrm{~kJ} / \mathrm{kg}, \mathrm{K}=0.65 \mathrm{~W} / \mathrm{mK}, \mu=0.47 \times 10^{-3} \mathrm{~kg} / \mathrm{ms}$.
(12 Marks)
8 a. State and prove Wiens displacement law of radiation.
(06 Marks)
b. The temperature of a black surface $0.2 \mathrm{~m}^{2}$ in area is $540^{\circ} \mathrm{C}$. Calculate:
i) The total rate of energy emission.
ii) The intensity of normal radiation.
iii) The wavelength of maximum monochromatic emissive power.
(06 Marks)
c. Derive an expression for a radiation shape factor and show that it is a function of geometry only.
(08 Marks)

Sixth Semester B.E. Degree Examination, Dec.2013/Jan. 2014 Finite Element Methods

Time: 3 hrs .
Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.
 PART - A

1 a. Differentiate between plane stress and plain strain problems with examples. Write the stressstrain relations for both.
(08 Marks)
b. Explain the node numbering scheme and its effect on the half band-width. (06 Marks)
c. List down the basic steps involved in FEM for stress analysis of elastic solid bodies.
(06 Marks)
2 a. State the principle of minimum potential energy. Determine the displacements at nodes for the spring system shown in the Fig.Q.2(a).
(08 Marks)

Fig.Q.2(a)

b. Determine the deflection of a cantilever beam of length ' L ' subjected to uniformly distributed load (UDL) of $P_{0} /$ unit length, using the trail function $y=a \sin \left(\frac{\pi x}{2 L}\right)$. Compare the results with analytical solution and comment on accuracy.
(12 Marks)
3 a. Derive an expression for Jacobiap matrix for a four-noded quadrilateral element. ($\mathbf{1 0} \mathbf{~ M a r k s)}$
b. For the triangular element shown in the Fig.Q.B(b). Obtain the strain-displacement matrix ' B ' and determine the strains \in_{x}, \in_{y} and $\gamma_{x y}$.
Nodal displacements $\{\mathrm{q}\}=\left\{\begin{array}{llllll}2 & 1 & 1 & -4 & -3 & 7\end{array}\right\} \times 10^{-2} \mathrm{~mm}$.
(10 Marks)

Note: All dimensions in mm .

Fig.Q.3(b)

4 a. An axial load $\mathrm{P}=300 \times 10^{3} \mathrm{~N}$ is applied at $20^{\circ} \mathrm{C}$ to the rod as shown in the Fig.Q.4(a). The temperature is then raised to $60^{\circ} \mathrm{C}$.
i) Assemble the global stiffness matrix (K) and global load vector (F).
ii) Determine the nodal displacements and element stresses.

Fig.Q.4(a)

$\mathrm{E}_{1}=70 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}, \mathrm{E}_{2}=200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
$\mathrm{A}_{1}=900 \mathrm{~mm}^{2}, \mathrm{~A}_{2}=1200 \mathrm{~mm}^{2}$
$\alpha_{1}=23 \times 10^{-6} /{ }^{\circ} \mathrm{C}, \alpha_{2}=11.7 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.
(12 Marks)
1 of 2
b. Solve the following system of equations by Gaussian-Elimination method:

$$
\begin{aligned}
x_{1}-2 x_{2}+6 x_{3} & =0 \\
2 x_{1}+2 x_{2}+3 x_{3} & =3 \\
-x_{1}+3 x_{2} & =2 .
\end{aligned}
$$

(08 Marks)

PART - B

5 a. Using Lagrangian method, derive the shape function of a three-noded one-dimension (1D) element [quadratic element].
(06 Marks)
b. Evaluate $I=\int_{-1}^{+1}\left[3 e^{x}+x^{2}+\frac{1}{(x+2)}\right] \cdot d x$
using one-point and two-point Gauss quadrature.
(06 Marks)
c. Write short notes on higher order elements used in FEM.

6 a. For the two-bar truss shown in the Fig.Q.6(a). Determine the nodal displacements and element stresses. A force of $\mathrm{P}=1000 \mathrm{kN}$ is applied at node 1. Take $\mathrm{E}=210 \mathrm{GPa}$ and $A=600 \mathrm{~mm}^{2}$ for each element.
(12 Marks)

Fig.Q.6(a)

b. Derive an expression for stiffness matrix for a $2-\mathrm{D}$ truss element.
(08 Marks)
7 a. Derive the Hermite shape functions of a beam element.
(08 Marks)
b. A simply supported beam of span 6 m and uniform flexural rigidity EI $=40000 \mathrm{kN}-\mathrm{m}^{2}$ is subjected to clockwise couple of 300 kN -m at a distance of 4 m from the left end as shown in the Fig.Q.7(b). Find the deflection at the point of application of the couple and internal loads.
(12 Marks)

Fig.Q.7(b)

8 a. Find the temperature distribution and heat transfer through an iron fin of thickness 5 mm , height 50 mm and width 1000 mm . The heat transfer coefficient around the fin is $10 \mathrm{~W} / \mathrm{m}^{2}$. K and ambient temperature is $28^{\circ} \mathrm{C}$. The base of fin is at $108^{\circ} \mathrm{C}$. Take $\mathrm{K}=50 \mathrm{~W} / \mathrm{m}$. K . Use two elements.
(10 Marks)

Fig.Q.8(a)

b. Derive element matrices for heat conduction in one-dimensional element using Galerkin's approach.
(10 Marks)
\square

Sixth Semester B.E. Degree Examination, Dec.2013/Jan. 2014 Mechatronics and Microprocessor

Time: 3 hrs .

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. What are primary objectives of mechatronics? Explain with a block diagram the key components in a typical mechatronics system.
(10 Marks)
b. Explain with a block diagram, the working of automatic camera.
(10 Marks)
2 a. Distinguish between sensor and transducer. Explain detail the elassification of transducers.
(10 Marks)
b. Write short notes on the following: i) Proximity sensors; (ii) Hall effect sensors. (10 Marks)

3 a. Write brief notes on silicon controlled rectifier and junction field effect transistors.(10 Marks)
b. Explain with neat circuit diagrams, various types of D.C. rotors with respect to field coils.
(10 Marks)
4 a. What is data acquisition? Explain with block diagram DAQ system.
(08 Marks)
b. Write short notes on the following:
$\begin{array}{ll}\text { i) Multiplexer. } & \text { (} 06 \text { Marks) } \\ \text { ii) Explain analog to digital conversion process. } & (06 \text { Marks) }\end{array}$

PART - B

5 a. What is a microprocessor? Draw the block diagram of a micro computer and explain briefly the three segments (ALU, register and control unit) of a microprocessor.
(10 Marks)
b. Define logic gates. Draw the symbols of AND, OR, EXOR and NOT gates and corresponding truth tables.
(10 Marks)
6 a. Explain Intel 8085 microprocessor with the help of block diagram.
b. Explain briefly a microcontroller, with a simplified block diagram.
c. Compare microprocessors and microcontrollers.

7 a. Briefly explain the various forms of memory unit: i) ROM; ii) PFROM; iii) EPROM; iv) EEPROM; v) RAM.
b. Write short notes on the following:
i) Data and address bus.
ii) Instruction register and temporary register.

8 Write short notes on the following:
a. Elements of closed loop control system.
b. Bimetallic thermostat.
c. Laws of Boolean algebra.
d. Classification of micro controllers.
(20 Marks)

USN

Sixth Semester B.E. Degree Examination, Dec. 2013 / Jan. 2014 Non - Traditional Machining

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, selecting atleast TWO question from each part. PART - A

1 a. What is NTM? Classify the NTM processes.
(07 Marks)
b. Compare and contrast between traditional and non - transitional machining processes.
(07 Marks)
c. List the factors influencing process selection and explain any two.
(06 Marks)
2 a. Write a note on process capability of USM.
(06 Marks)
b. With a neat figure, explain tool feed system used in USM.
(06 Marks)
c. Discuss the effects of: i) Grain size ii) Amplitude and frequency of vibration
iii) Applied static load iv) Slurry on MRR in USM.
(08 Marks)
3 a. Explain the variables that influence MRR and accuracy in AJM.
(10 Marks)
b. What are the advantages and applications of WJM?
(06 Marks)
c. Explain AJM mechanics.
(04 Marks)
4 a. Describe various process parameters affecting ECM.
(10 Marks)
b. Differentiate ECG with conventional grinding.
(05 Marks)
c. With a neat sketch, explain electro - chemical Honing.
(05 Marks)
PART - B
5 a. List the factors affecting the selection of Maskants and Etchants.
(10 Marks)
b. Explain the sequence of operations in chemical blanking.
(06 Marks)
c. List the functions of electrolyte.
(04 Marks)
6 a. Explain flushing. Enumerate any 2 methods of flushing used in EDM.
(10 Marks)
b. With a figure, explain the mechanism of material removal in EDM.
(06 Marks)
c. List the advantages and applications of EDM.
(04 Marks)
7 a. With a neat sketch, explain the principle of PAM.
(10 Marks)
b. List out the advantages, disadvantages and applications of PAM.
(10 Marks)
8 a. With a neat sketch, explain the mechanism of metal removal in LBM.
(10 Marks)
b. With a neat figure, explain the principle of EBM.
(10 Marks)

